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The phase diagrams of Ce, Th, and Pu metals have been studied by means of
density-functional theory (DFT). In addition to these metals, the phase stability
of Ce-Th and Pu-Am alloys has been also investigated from first-principles
calculations. Equation-of-state (EOS) for Ce, Th, and the Ce-Th alloys has
been calculated up to 1 Mbar pressure in good comparison to experimental
data. Present calculations shows that the Ce-Th alloys adopt a body-centered-
tetragonal (bct) structure upon hydrostatic compression that is in excellent
agreement with measurements. The ambient pressure phase diagram of Pu is
shown to be very poorly described by traditional DFT but rather well modeled
when including magnetic interactions. In particular, the anomalous δ phase of
Pu is shown to be stabilized by magnetic disorder at elevated temperatures.
The Pu-Am system has also been studied in a similar fashion and it is shown
that this system, for about 25% Am content, becomes antiferromagnetic below
about 400 K that corroborate the recent discovery of a Curie-Weiss behavior in
this system.
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1. Introduction

Actinide physics has seen a remarkable focus the last decade or so due to the com-
bination of new experimental diamond-anvil-cell techniques and the development of
fast computers and more advanced theory. All f -electron systems are expected to
have multi-phase phase diagrams due to the sensitivity of the f -electron band to
external influences such as pressure and temperature. For instance, compression of
an f -electron metal generally cause the occupation of the f states to change due to
a shift of these bands relative to others. This can in some cases, as in the Ce-Th sys-
tems,[1,2] cause the crystal to adopt a lower symmetry crystal structure at elevated
pressures. Under compression, the f -electron dominance increase in these systems
and drives the phase transition. The reason to this has been discussed[3] in terms
of a Peierls or Jahn-Teller distortion that favors low symmetry over high symmetry
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crystal structures. On the other hand, all bands broaden under compression and
the distortion of the lattice becomes less important, while electrostatic forces tend
to move atoms to higher symmetry positions, ultimately leading to closer packed
structures with higher symmetry. This interplay between competing effects and their
pressure dependence often results in interesting multi-phase phase diagrams and this
is the case for Ce, Th, Pu, and corresponding alloys.

The first part of our manuscript is devoted to study phase stabilities of Ce, Th,
and Ce-Th alloy systems as a function of compression. Cerium metal has a very
interesting phase diagram with two isostructural, face-centered-cubic (fcc) phases,
namely the γ and α phase. The latter is considerably denser than the former and
there is a substantial volume collapse associated with the γ → α transition which
occur at a moderate pressure close to 10 kbar. The nature of this transition is
currently not fully understood, but it can be described[4] as a Mott transition of
the f electron from a localized (γ-Ce) to an itinerant (α-Ce) state. Below 100 kbar
there is also a phase transition to a lower symmetry phase which is believed to
be either orthorhombic or body-centered monoclinic.[5] Above 120 kbar, however,
Ce is stabilized in a bct structure and remains in this phase up to the highest
measured pressure. Th is similar to Ce in this regard, but has a simpler phase
diagram. Only one phase transition has been seen at low temperatures: fcc → bct
at about 600 kbar. At Mbar pressures both these metals remain in a bct crystal[6,7]
with a c/a axial ratio close to 1.65. Also the Ce-Th alloy systems show a similar
behavior.[1] Theoretically, the Ce-Th systems are rather well described within a
density-functional approach,[2,8] although a proper, disordered, alloy treatment of
the Ce-Th system has not yet been presented. In fact, it was argued that the disorder
in a realistic Ce-Th alloy could not be well modeled by an ordered compound. The
theoretical low pressure behavior of CecTh1−c was therefore erroneous[2] for c = 0.43.
In Sect. 3 we revisit this problem by applying a more sophisticated theory, based on
the coherent potential approximation (CPA) for alloys.

Even though the Ce-Th system is well described by traditional DFT, Ce metal
at low pressures seems to be affected by electron-correlations that are generally not
included in the DFT. Phase stability of Th and subsequent actinides up to Pu,
however, are accurately predicted by density-functional theory.[9,10] Plutonium is
preceding Am, which has an atomic density, crystal, and electronic structure much
different from that of Pu. These differences are attributed to the localization of
5f electrons that occurs between Pu and Am. Many facets of Pu actually suggest
that this localization has already begun in Pu. For instance, some phases in the
Pu phase diagram share properties with Am. δ-Pu, which is stable at 593 K, is
fcc with an atomic volume 25% greater than the monoclinic ground-state α phase.
The fcc crystal structure is close-packed and quite similar to the double-hexagonal
close-packed (dhcp) of Am. Also, the δ-Pu atomic density is much closer to Am
than that of the ground-state α phase. Hence, there are dramatic changes with
temperature in the Pu electronic structure and these can not be understood from
the traditional DFT that is generally used for the light actinides.[9] This problem was
early recognized and during the last few years new models and various corrections
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to the DFT have been proposed to mainly deal with δ-Pu. A description of these
attempts were recently given.[11] Perhaps the most natural procedure is to consider
magnetic interactions that have often been ignored in the past for plutonium because
of the belief that these are of negligible importance. Many researchers have now,
however, concluded that magnetic effects are necessary to include in any model for
δ-Pu and δ-stabilized alloys of Pu. In Sect. 4 we will review some recent results for
Pu including energetics of the ambient pressure phase diagram and the stability of
δ-Pu. The theory is expanded in Sect. 5 to include also results for the δ-Pu-Am
system.

The paper is organized as follows. Our computational approach is discussed in
Sect. 2, followed by results from the Ce-Th (Sect. 3), Pu (Sect. 4), and Pu-Am (Sect.
5) calculations. We present our conclusions in the last section, Sect. 6.

2. Computational details

The calculations we have referred to as EMTO are performed using scalar-
relativistic, spin-polarized Green’s function technique based on an improved screened
Korringa-Kohn-Rostoker (KKR) method, where the one-electron potential is repre-
sented by optimized overlapping muffin-tin (OOMT) potential spheres.[12–15] Inside
the potential spheres the potential is spherically symmetric and it is constant be-
tween the spheres. The radii of the potential spheres, the spherical potentials inside
the spheres, and the constant value from the interstitial are determined by mini-
mizing (a) the deviation between the exact and overlapping potentials and (b) the
errors coming from the overlap between spheres. Thus, the OOMT potential en-
sures a more accurate description of the full potential compared to the conventional
muffin-tin or non-overlapping approach.

Within the EMTO formalism, the one-electron states are calculated exactly for
the OOMT potentials. As an output of the EMTO calculations, one can determine
the self-consistent Green’s function of the system and the complete, non-spherically
symmetric charge density. Finally, the total energy is calculated using the full charge
density technique.[15,16]

For the total energy of random substitutional alloys, the EMTO method has been
recently combined with the CPA[17] that also allows for the treatment of magnetic
disorder.[18,19] In the present work, as well as in our previous papers,[20–23] a
paramagnetic (PM) δ-Pu was modeled within the disordered local moment (DLM)
approximation.[24] In order to calculate this state, one uses a random mixture of
two distinct magnetic states, namely, the spin up and spin down configurations of
the same atomic species in the system.

The calculations are performed for a basis set including valence spdf orbitals and
the semi-core 6p state whereas the core states were recalculated at each iteration.
Integration over the irreducible wedge of the fcc Brillouin zone (BZ) is performed
using the special k-point method[25]. The Green’s function has been calculated for
40 complex energy points distributed exponentially on a semicircle with a 1.9 Ry
diameter enclosing the occupied states.
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3. Ce, Th, and the Ce-Th alloys

Before entering the details of the crystal structure of Ce and Th under com-
pression, we compare our calculated EOS with the experimental data for these two
metals. In Figure 1 we show the theoretical and measured equations of state for Ce
metal. The agreement between theory and experiment[6] is good. Calculated equi-
librium volume and bulk modulus are V0 = 27.7 Å3 and B0 = 380 kbar compares
well with room temperature data[26,27] (V0 = 28.1 Å3 and B0 = 290 kbar). Also for
Th, the EOS is in good agreement with experiment,[28] see Figure 2. The Th equi-
librium volume, 33.3 Å3, and b ulk modulus, 580 kbar, are very close to measured
data,[28] 32.9 Å3 and 580 kbar, respectively.

Next we study the crystal-structure behavior for Ce, and in Figure 3 we plot
the calculated c/a axial ratio for bct Ce together with experimental data.[6]. At
pressures beyond about 120 kbar, cerium adopts a bct structure with a c/a ratio
close to 1.65. Quantitatively, this behavior is reproduced by our calculations. We note
that there is a rapid increase of the c/a axial ratio in the calculations were there
is known to be an intermediate phase[6] in Ce (below 100 kbar). The intermediate,
lower symmetry phase, is limited to a small pressure range and is not considered in
the present calculations, but has been investigated theoretically before.[9] A similar
behavior is found for thorium metal, see Figure 4. Experimentally, Th is stable in its
ambient pressure phase (fcc) up to 630 kbar. At higher compression Th transforms
continuously into the bct phase. The transition pressure (∼ 630 kbar) is considerably
higher in Th than in Ce. The fact that the fcc → bct transition occurs at a higher
pressure in Th than in Ce is a consequence of the somewhat lower f -band population
in Th metal at low pressure.[2]

As we established that elemental Ce and Th can be very well described by
our calculations we next consider the Ce43Th57 disordered fcc alloy. In Figure 5
we show theoretical EOS for the Ce43Th57 disordered fcc alloy. Notice that the
Ce43Th57 alloy curve is located between the curves for pure Th and Ce, which
are also depicted in this Figure. Calculated equilibrium atomic volume and bulk
modulus of the Ce43Th57 alloy are 31.4 Å3 and 460 kbar, respectively, which is in
fair agreement with experimental data of 32.9 Å3 and 280 kbar.[1]

Finally, Figure 6 shows the calculated and measured c/a ratio as a function of
pressure for Ce43Th57. The structural behavior of this alloy was previously mod-
eled by an ordered CeTh compound.[2] These calculations predicted unrealistic low-
pressure structures for this system, where the axial c/a ratio first decreased with
pressure and suddenly jumped to a high value closer to the measure value at a higher
compression. It was speculated[2] that the discrepancy with experiment was due to
the failure of modeling the disordered alloy with an ordered compound. Here we
can address this question explicitly because the EMTO-CPA formalism allows us to
treat the alloy more realistically. The EMTO-CPA calculations confirm that the fcc
→ bct phase transition begins between 100-200 kbar, which is close to the corre-
sponding transition in Ce metal (120 kbar), but considerably lower than for Th (630
kbar). Our calculations thus reproduce the experimental observation[1] that the fcc
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→ bct transition pressure is a strongly nonlinear function of Th concentration in
the Ce-Th alloy system.

4. Pu metal

Pu metal and related alloys and compounds are studied intensively experimen-
tally and theoretically, partly because of their richness of fascinating and counter
intuitive properties.[29] Theoretically, the first reliable total energies for Pu was cal-
culated not so long ago[30] and when comparing a number of competing phases, the
monoclinic α phase proved to be the ground state in agreement with experiment.
The α-Pu atomic volume was somewhat small and the bulk modulus too large, but
a more serious deficiency of the calculations[30] seemed to be the poor description
of some other phases, such as the δ phase. In Figure 7 we show total energies[31] of
α, β, γ, and δ plutonium. Notice that β, γ, and especially δ plutonium have total
energies so high that their existence in the Pu phase diagram can not be explained.
Moreover, the predicted atomic densities for these phases are close to that of α-Pu
but in severe disagreement with the measured atomic volumes shown as vertical
lines in Figure 7. The δ phase is not even mechanically stable because the calculated
elastic constant C′ is strongly negative.

The remarkable failure of the customary DFT treatment for some of the Pu
phases, and most notably the δ phase, was early recognized but theoretical efforts
to improve the model has only recently been suggested.[31–34] A more detailed
discussion of these efforts has been presented elsewhere.[11] Because we are mainly
interested in structural stability, which require accurate and consistent total-energy
calculations, most of the proposed models for Pu can not be applied. Inclusion
of magnetic interactions into the DFT, however, seems to provide a theoretical
framework in which reliable total energies can be obtained.[31]

Figure 8 shows total energies as a function of atomic volume for nonmagnetic
(NM), antiferromagnetic (AF), and disordered magnetic (D) configurations of δ-
Pu.[35] Clearly the total energies are lowered when the magnetic spin and orbital
contributions are included. A direct comparison to the α phase is done below. Notice
also in Figure 8 that the atomic volume for the FM, AF, and D calculations are
all in good agreement with the experimental value (vertical line) while the NM
calculation predicts much too small atomic volume. This plot suggests that AF is
the zero temperature ground-state configuration for δ-Pu, whereas in reality this
phase is stable above 593 K. The relatively small energy difference between the AF
and D configurations are therefore not sufficient to rule out either one as a good
model for the true δ phase. Next we compare the mechanical stability between the
AF and D δ-Pu. In Figure 9 we show the calculated so-called Bain transformation
path for these configurations. The energy curvature at c/a =

√
2 corresponds to the

tetragonal shear constant C′. Clearly AF spin ordering provides an unstable situation
(C′ negative) while the magnetic disorder does not. Hence, it is tempting to suggest
that spin entropy may favor the disordered state over the antiferromagnetic state at
sufficiently high temperatures. If this is the case, the γ → δ phase transition could
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be understood in terms of an order → disorder transition: δ-Pu is mechanically
stable in the disordered state but upon cooling a magnetic ordering destabilizes
δ-Pu mechanically and thus driving the structural phase transition.

In order to quantify these ideas, Monte Carlo (MC) simulations were performed
to study the transition from a disordered→ ordered magnetic states of δ-Pu.[21] The
effective Ising cluster interactions were obtained from first-principles calculations
incorporated within the structure-inverse and general perturbation methods. Figure
10 shows the total energy per atom and its temperature derivatives in these MC
simulations. The calculated transition temperature (∼ 548 K) is in good agreement
with the temperature measured at the γ → δ transition of plutonium (593 K).

Once we established that a paramagnetic (disordered moments) approach pro-
vides a viable model for δ-Pu, direct comparisons with experiments become very
important. First, the electronic structure has been studied[36] by means of photoe-
mission (PE). PE is a probe of the occupied part of the electron density of states
(DOS) and can be directly compared to the calculated electronic structure when
lifetime broadening and instrumental resolution are accounted for. In Figure 11 we
show calculated DOS[35] and photoemission[36] for δ-Pu. Notice that the sharp peak
just below the Fermi energy, at zero energy, is very well reproduced in the calcula-
tions. Also the shoulder, sometimes referred to as a ”Kondo resonance”, at about
-0.3 eV is evident in the calculations although somewhat exaggerated. Overall, the
comparison between theory and experiment is very impressive. It should be noted
that when magnetic interactions are ignored, PE and DOS are in great disagreement
with each other.[36]

Recently the elastic constants and phonon dispersions for δ-stabilized pluto-
nium were measured by x-rays.[37] The zone-boundary phonons (ZBP) are relatively
straightforward to calculate from the total energy response of a movement of an atom
corresponding to the phonon mode.[38] Results of EMTO calculations for ZBP and
elastic constants are presented in Table 1 together with available experimental data.
It is clear from the table that fundamental bonding properties are captured in the
calculations. Theoretical equilibrium volume as well bulk modulus compare very
favorably with experiments. Also the anomalously large anisotropy ratio (C44/C′)
is reproduce by theory. The magnitude of the calculated elastic constants and the
ZBP are consistently larger than the measured data, however. We attribute this
systematic discrepancy, at least partly, due to the fact that our calculations reflect
these properties at zero temperature while the measurements are performed at room
temperature. It is known that the elastic constants have a strong temperature de-
pendence and stiffen considerably upon cooling[39] and it seems plausible that this
is true also for the phonons. Another possible source of the discrepancy might be
that the measured sample is δ-stabilized alloy whereas the theory deals with pure
δ-Pu.

Our theory so far suggests that magnetic interactions are important in Pu and
that δ-Pu is stabilized at 550-600 K due to magnetic disorder. Several properties
of δ-Pu, some quite anomalous, are indeed very well reproduced by this assump-
tion. Higher temperature phases have presumably also disordered local magnetic
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moments, whereas for the lower temperature phases (α, β, and γ) the magnetic
configurations are ordered. In fact, an analysis of magnetic ordering in low temper-
ature Pu suggest antiferromagnetic order to be the prevalent configuration[40] in
agreement with first-principles calculations. In Figure 12 we plot calculated total
energies for α, β, and γ plutonium (antiferromagnetic) together with δ, δ′, and ε
plutonium (disordered). The disordered magnetic configuration was modeled in a 8
atom super cell by the so-called special quasi-random structure.[35] Notice that the
total energies are in order of α, β, γ, δ, δ′, and ε. This is the actual order they do
occur in the ambient pressure phase diagram.[41] The numerical order of the atomic
volumes is slightly different: α, β, γ, ε, δ′, and δ. This is again in exact agreement
with the known phase diagram and that is quite remarkable when comparing to the
failures of the theory when magnetic interactions are not accounted for (see Figure
7). From the total energies one can obtain the bulk modulus as well, and for α-Pu it
is calculated to be 500 kbar. This compares very favorably with the experimentally
suggested data ranging from 400 to 660 kbar.[42] Bulk moduli for the β, γ, δ′, and ε
phases are not known, but the present theory predicts that they are all within 230
- 590 kbar. Notably, it is 410 kbar for δ-Pu that compares well with the measured
300-350 kbar.[43]

5. Pu-Am alloy system

Following the idea presented in Ref. [22], we conclude that an increase of the
larger element (Am) content in the Pu-Am system stabilizes the disordered mag-
netic state at lower temperatures. To quantify this hypothesis we undertook MC
simulations similar to those presented earlier.[21] Results of the MC calculations of
the DLM → AF transition temperature in the Pu-Am system are shown in Figure
13. By introducing Am into the Pu-Am system one could drop the magnetic DLM
→ AF transition temperature from ∼ 548 K (Pu) to ∼ 372 K (Pu70Am30). From
the Pu-Am phase diagram,[44] however, it is known that already ∼ 6 at. % of Am
could stabilize δ-Pu phase to room temperature.

As one can see from Figure 13, the δ-Pu75Am25 alloy will have an AF order at
and below ∼ 400 K, whereas above this temperature disordered magnetism is ex-
pected. This magnetic transition was predicted to occur also for pure δ-Pu but at a
considerably higher temperature (548 K). In the case of δ-Pu the magnetic DLM→
AF transition was suggested[20–22] to drive the δ → γ transition due to a structural
instability of the AF phase. For the Pu-Am alloy, however, no such structural phase
transition has been found and this suggests that the AF configuration remains me-
chanically stable. Theoretically, this hypothesis can be corroborated by calculating
elastic constants or relevant deformation energies for the AF Pu-Am alloy.

In Figure 14 we show relative energies for AF Pu3Am and AF δ-Pu as a function
of c/a axial ratio. For c/a =

√
2 the fcc symmetry is recovered. Notice that for δ-Pu

the AF configuration is strongly unstable with respect to the tetragonal distortion,
whereas the Pu3Am system remains mechanically stable, with a minimum in the to-
tal energy for c/a =

√
2. Hence, there is a fundamental difference between δ-Pu and
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Pu3Am in that both undergo a magnetic DLM → AF transition that destabilizes
δ-Pu but not the Pu3Am. This is important because our theory thus predicts the
possibility for an AF order in a Pu-Am alloy system. In order to verify this experi-
mentally, one should perform magnetic susceptibility measurements that can detect
a Curie-Weiss behavior when AF order is present. Dormeval[45] has performed such
experiments that in fact confirm our theoretical picture. Her investigation shows that
at about 24-26 at. % Am in δ-Pu, an unambiguous Curie-Weiss behavior is develop-
ing. In δ-Pu, where AF order is not expected theoretically, magnetic susceptibility
is known to be nearly temperature independent.

The question we deal with in the remaining part of this section is why alloying
Pu with Am stabilizes the antiferromagnetic state in this alloy. Both Dormeval’s
measurements[45] and theoretical picture presented here support the idea that δ-Pu
stabilized by ∼ 25 at. % of Am is antiferromagnetic at low temperatures. Söderlind
et al.,[20] however, rule out this magnetic order for pure δ-Pu due to its mechanical
instability. It is well known that Pu and other actinides with itinerant 5f states tend
to crystallize in low symmetry and open structures and that the reason for this is
due to high density of 5f states at the Fermi level (EF ) that efficiently rules out
high symmetry structures.[3] It is tempting to also associate the destabilization of
antiferromagnetic δ-Pu at low temperatures to a similar phenomenon. We therefore
show, in Figure 15, the calculated DOS for antiferromagnetic Pu and Pu3Am. The
plot focuses on the DOS behavior in the vicinity of the EF located at zero energy and
marked with a dashed vertical line. Notice that for pure Pu, there is a strong peak
intersecting the EF with its maximum just below. This is an inherently unfavorable
situation due to the large contribution of this peak to the band energy.[3] For Pu3Am
(bold line), however, this peak is shifted mostly below EF , which is now located close
to a minimum in the DOS. The DOS at the Fermi level is correspondingly much
lower (∼ 25) in Pu3Am compared to Pu (∼ 45). This shift of the EF in Pu3Am
relative to pure Pu is a consequence of the additional 5f electrons provided by the
americium in this compound. We speculate that this more stable situation in Pu3Am
is responsible for the mechanical stability in this system.

Our electronic structure calculations predict that the DOS has a pronounced
peak at the EF for Pu that is largely diminished when alloyed with about 25 at. %
americium. Photoemission is able to detect such a difference and for that purpose we
also show, in Figure 16, calculated DOS where life time broadening has been taken
into account, as described by Arko et al.[36]. We know from Figure 11 (Sect. 4) that
for δ-Pu the DOS compares rather well with photoemission[36] results. Figure 16
suggests that for the Pu-Am system, the peak is shifted to lower binding energies
and that the shoulder at about -0.5 eV in Pu is fully suppressed. The photoelectron
spectroscopy measurements by Dormeval[45] show a quantitative agreement with
this finding.
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6. Conclusions

We have presented accurate electronic-structure calculations for several f elec-
tron systems including Ce, Th, Pu, and Am. Generally the theory reproduces exper-
imental data very well. The structural pressure dependence of the Ce-Th system is
well understood and driven by the increased presence of f electrons under pressure.
Ce, Th, and the Ce-Th alloys behave rather similar, although Ce has intermediate
phases in the phase diagram at about 100 kbar that do not exist in the Th and Ce-
Th alloys. Consequently, the fcc → bct transition is of first order in Ce but not in
Th and the Ce-Th alloys. For the near fifty-fifty concentration of Ce-Th disordered
alloy a CPA treatment is necessary to reproduce the correct structural behavior.

Many properties of Pu have not been reproduced in the past by theory and
therefore been illusive to material scientists. Here we present a magnetic model that
is describing Pu remarkably well. The very complex phase diagram of Pu is shown
to be a result of strong magnetic interactions in this metal. In particular, δ-Pu is
believed to be a disordered magnet. When alloyed with Am, our theory predicts that
δ-Pu is an ordered antiferromagnet above about 25% Am concentration below 400
K. This is entirely consistent with recent susceptibility measurement of this system.
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Figure 1. Equation of state for Ce. Experimental results[6] are marked with open
squares, whereas theory is given by a solid line.

Figure 2. Equation of state for Th. Experimental results[28] are marked with
open squares, whereas theory is given by a solid line.
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Figure 3. The c/a axial ratio for the bct structure as a function of pressure for
Ce. Experimental data[6] are marked with open squares while theoretical results
are given by a solid line and filled circles.
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Density-functional calculations for Ce, Th, and Pu

Figure 4. The c/a axial ratio for the bct structure as a function of pressure for
Th. Experimental data[28] are marked with open squares while theoretical results
are given by a solid line and filled circles.

Figure 5. Equation of state for the Ce43Th57 disordered alloy. EOS for Ce and
Th are also shown.

Figure 6. The c/a axial ratio for the bct structure as a function of pressure for the
Ce43Th57 disordered alloy. Experimental data[1] are marked with open squares
while theoretical results are given by a solid line and filled circles.

Figure 7. Total energies of α, β, γ, and δ plutonium, obtained from nonmagnetic
calculations.[30]

Figure 8. Total energies as a function of atomic volume for nonmagnetic (NM),
antiferromagnetic (AF), and disordered magnetic (D) configurations of δ-Pu.[35]

Figure 9. Total energy as a function of c/a axial ratio for antiferromagnetic (AF)
and disordered magnetic (D) configurations of Pu.[35]

Figure 10. Total energy E and its temperature derivative dE/dT as a function
of temperature in the MC simulations of δ-Pu.[21]

Figure 11. Comparison of spectra[36] (dased line) to calculated DOS[35] (solid
curve). The theoretical curve has been convoluted with life time broadening.

Figure 12. Calculated total energies for the six known polymorfs of plutonium as
a function of atomic volume.[40] Note that the y axis is boken to better display
the ε-Pu energies.

Figure 13. The DLM → AF transition temperature for δ-Pu1−cAmc alloys.[23]

Figure 14. Relative energy as a function of c/a axial ratio for Pu and Pu3Am.[23]
For c/a = 1.414 the fcc crystal structure is recovered.

Figure 15. Total electronic density of states for Pu and Pu3Am.[23] The energy
scale is shifted so that the Fermi level is positioned at zero energy.

Figure 16. Life time broadened[36] electronic density of states for Pu and
Pu3Am.[23]
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Density-functional calculations for Ce, Th, and Pu

Table 1. EMTO equilibrium volume (Å3), bulk and elastic moduli (kbar), and
zone-boundary phonons (THz) for δ-Pu.

Method V B C′ C44 XL XT LL LT

EMTO 25.5 380 81 810 7.5 2.7 2.9 1.3
Experiment 25.01,2 3001, 2902 481, 492 3401, 3102 3.12 1.72 3.12 0.482
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